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Abstract 

This report describes Sprite's kernel-to-kernel remote procedure call (RPC) sys­

tem. User programs access system services through the Sprite kernel on their lo­

cal host, and the local kernel makes remote procedure calls to access services lo­

cated on remote hosts. Each kernel has several RPC channels so that it can be 

making RPCs for several processes concurrently. A server machine keeps several 

kernel server processes that are used to execute service procedures. Messages car­

ry requests for remote procedure execution to server kernels and carry results 

back to client kernels. The RPC network protocol requires only two messages per 

RPC in the common case. The protocol also supports efficient data transfers 

larger than the network packet size to meet the bandwidth requirements of 

Sprite's distributed filesystem. t 
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1. Introduction 

The Sprite operating system is designed for a set of co-operating hosts that 

communicate over a network. The details of network communication are hidden 

from users by modeling the Sprite system as a set of services available to user pro­

grams without regard to their network locations. Sprite services include a shared 

hierarchical filesystem [\Ve085], remote program execution, and physical device 

access. User processes access all system services by making system calls into a 

local Sprite kernel. If a service is not implemented locally, the local Sprite kernel 

uses remote procedure call (RPC) to call a service procedure on a remote server 

machine. The Sprite RPC system lets the calling kernel, called the client, invoke 

the remote service procedure as if it were a local procedure. 

The RPC system uses messages to carry requests for remote procedure execu­

tion to servers and to carry results back to clients. It uses a network protocol 

based on work by Birrell and Nelson (BiN84], which in the common case elim­

inates explicit acknowledgment messages; normally an RPC requires only a 

request message and a reply message. Eliminating extra messages reduces over­

head; with only 2 messages per RPC, message handling still accounts for about 

half the overhead in each RPC. Performance results in Section 6 indicate 5.8 mil­

liseconds of overhead for a remote procedure call between two Sun-2 workstations 

with Intel Ethernet controllers. The protocol also supports request and reply mes­

sages larger than the maximum network packet size. This allows high bandwidth 

communication, up to 380 Kbytesjsecond, for services like Sprite's network 

filesystem. 

The structure of the RPC system is outlined in Section 2. Section 3 describes 

the RPC network protocol between a single client and a single server. Section 4 

extends the protocol to a system of many clients and many servers. This includes 

allowing more than one outstanding RPC by client kernels, and allowing server 

kernels to execute more than one service procedure concurrently. Section 5 gives 

the low-level details of how messages are moved efficiently between the network 

and the processes using them. Section 6 gives the results of a few performance 

benchmarks and assesses the performance cost of different parts of the RPC sys­

tem. Section 7 compares this RPC system with some others and Section 8 gives 

the conclusions of the report. Finally, there are a few appendices that fill in those 

details of the implementation that are not in the main report because they dis­

tract from the overall view of the system. 

2. RPC System Structure 

The standard model of RPC is that a remote service procedure is called by a 

client process on the local machine and executed by a server process on the 
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remote machine. In Sprite, the client and server processes are executing in their 
respective kernels' address space during an RPC. The client process is usually a 
user process that has entered the kernel during a system call. The server process 
is a kernel process, a process that lives entirely in the kernel's address space. The 
service procedures operate on kernel data structures so it is natural to use a ker­
nel process to execute them. The client process can also be a kernel process. For 
example, on a diskless workstation the page-out process, which is a kernel process, 
is an RPC client when it writes dirty pages to a remote file server. 

The bulk of the RPC system is a communication system used between the 
client process and the server process. Through the communication system, the 
client process issues a request for remote procedure execution, supplies input 
parameters to the remote procedure, and waits while the remote procedure exe­
cutes. The server process uses the communication system to get the client's 
requests, and to return the results of the service procedure to the client process. 

The heart of the communication system is the network layer that uses mes­
sages to communicate service requests and results between client and server 
processes. The network layer is described in detail in Section 3. The network 
layer's use of messages is hidden by a layer of stub procedures. The function of 
the stub layer is to package parameters and results into messages to be sent out, 
and to unpackage parameters and results from arriving messages. There are stub 
procedures on both the client and the server. Figure 1 illustrates the flow of con­
trol through the layers of the system during a remote procedure call. 

The client stub procedure has the same parameters as the remote service pro­
cedure so the client process does not have to know that the service procedure exe­
cutes remotely. The function of a client stub procedure is to package up the 
input parameters of the remote procedure so that the network layer can send 
them to the server process in a request message. After the request message is 
sent, the client stub waits for a reply message that the network layer returns to it 
from the server process. The reply message contains the results of the service pro­
cedure, and the client stub procedure unpacks those results from the reply mes­
sage so its caller can access the results normally. 

Server stubs are used by the server process so that service procedur2s do not 
have to handle messages. The server process gets request messages from the net­
work layer and calls the server stub for the service procedure with the message 
data as a parameter. The function of a server stub procedure is to unpackage the 
input parameters from the request message, call the service procedure with its 
regular parameters, and package up the results of the service procedure. The 
server process then takes the packaged results and uses the network layer to 
return them to the client process. 

The stubs for a service procedure can be generated automatically, and some 
RPC systems include stub compilers (eg. [BiN84]). This is useful in user-level 
RPC systems that are used in a large number of different programs. The Sprite 
RPC system, however, does not have a stub compiler. Although one would be a 
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Client Process Server Process 

Stub 
Network Network 

Stub 
Service 

Layer Layer procedure 

Call stub 
Package 
input 
parameters 

Reliably 
deliver 
parameters 

Dispatch 
Wait ... to server 

I stub 
I Unpack 
I parameters 
I Compute 
I results 
I Package 
I results 
I Reliably 
I deliver .. results 

Dispatch 
to waiting 
client 

Unpackage 
results 

RPC stub 
Network returns I Boundar y 

Figure 1. The execution thread as a client process calls a remote procedure. 
The client process blocks while the execution thread continues in the server pro­
cess. The network layer is used to send messages between the client and server 
processes, and the stub procedures hide the network layer from the client process 
and the service procedure. 

useful development tool, the effort of developing a stub compiler is greater than 
hand-coding the required stub procedures. Sprite only has a limited number of 
service procedures because it has a fixed set of distributed services. The Sprite 
filesystem, for example, is the biggest service, and it only has about 20 service 
procedures. 

3. The Network Layer 

The network layer implements the exchange of the request and reply mes­
sages between the the client process and the server process. Sprite uses a net­
work, an Ethernet [MeB76J, that limits the size of network packets and does not 
guarantee their delivery. To get a reliable exchange of request and reply mes­
sages, the RPC system uses a special-purpose network protocol; it requires only 2 
network packets per RPC in the common case. The network protocol also 
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supports messages larger than the maximum network packet size so that service 

procedures can take or return large data blocks. This section describes the net­

wor_k protocol in a simplified world of only one client and one server, and Section 

4 extends the RPC system to allow many clients and many servers. 

3.1. The RPC Network Protocol 

The RPC network protocol is designed to operate efficiently when there is a 

series of remote procedure calls between a client and the same server. Successive 

request and reply messages are used to acknowledge that previous messages were 

successfully transmitted. The receipt of a reply message by the client process ack­

nowledges the safe arrival of the corresponding request message it sent to the 

server, and the receipt of a request message by the server process acknowledges 

the safe arrival of the previous reply message it sent to the client. This technique, 

called implicit acknowledgment, comes from the RPC work done by Birrell and 

Nelson [BiN84]. If no messages are lost, each RPC requires only the request mes­

sage and the reply message; no extra acknowledgment messages are needed. See 

B···························~ 

Request 

(and ack) 

Request 

(and ack) 

·------------------------

----------------------------)> 

·------------------------

--- - -- -)> 

·------------------------

Computation 

Reply 

(and ack) 

Computation 

Reply 

(and ack) 

Computation 

Reply 

(and ack) 

RPC 

RPC 

RPC 

Figure 2. The RPC network protocol uses implicit acknowledgment to eliminate 

explicit acknowledgment messages. The server's reply message acknowledges the 

receipt of the client's request message, and the client's next request message ack­

nowledges the receipt of the server's previous reply message. 
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Figure 2. 

The implicit acknowledgment scheme needs a back-up in case a message gets 
lost. To guard against lost messages, a client process re-sends its request message 
if it does not get the reply message after a short timeout period. The retransmit­
ted request message includes a flag in the control section of the message that says 
the client needs an explicit acknowledgment for the request message. When the 
network layer on the server gets a retransmitted request message there are three 
cases: 

(1) The original request message was lost. In this case, the network layer on the 
server treats the request in the same way as it would have treated the origi­
nal request: it passes the request message to the server process to initiate exe­
cution of the service procedure. In addition, the network layer also returns 
an explicit acknowledgment message to the client process. 

(2) No messages were lost, but the service procedure is still executing. In this 
case, the network layer just returns an explicit acknowledgment message. 
This case is illustrated in Figure 3. 

(3) The service procedure has completed but the reply message was lost. The 
re-transmitted request message does not cause the service procedure to exe­
cute again. Instead, the network layer on the server resends a saved copy of 
the reply message. This in an important feature because it means that a ser­
vice procedure executes at most one time for each RPC by a client. A ser­
vice procedure that locks a file, for example, will fail if it is executed an extra 

Request 

(please ack) 
. . . ... )> 

~ ················· 

Long 

Computation 

• 

• 

• 

RPC 

Figure 3. If the remote computation takes a long time the client process will get 
a timeout error before getting the reply message. In this case it re-sends its re­
quest message to the server process and requests an explicit acknowledgment. 
The network layer on the server responds with an explicit acknowledgment to let 
the client process know that the remote computation is in progress. 
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time. 

If the server host is down then the client's re-sent request messages will not 
get explicitly acknowledged. After several retransmissions the client gives up and 
aborts the RPC. The server might also crash after sending an explicit ack­
nowledgment, but before completing the service procedure and sending the reply. 
To detect this situation, the client continues to resend its request message at regu­
lar intervals, even after it has received an explicit acknowledgment. If the server 
host crashes while executing the service procedure the client process again gets 
several timeout errors and aborts the RPC. 

The algorithm that the network layer uses in the client process to exchange 
the request and reply messages with the server is given in Figure 4. In the exam­
ple, the Receive() procedure blocks the client process until a message arrives, or 
until the wait interval passes. Note that the request message is sent to a server 

RPC_ Call(serveriD, requestMsg, replyMsgPtr) 
RpcHostiD serveriD; 

{ 

} 

RpcMessage requestMsg, *replyMsgPtr; 

int wait, timeouts; 

wait = initiaiWaitPeriod; 
timeouts = 0; 

Send(requestMsg, serveriD ); 

while (TRUE) { 

} 

status= Receive(replyMsgPtr, wait); 
if (status== TIMEOUT) { 

timeouts++; 
if ( timeouts > maxTimeouts) 

return(TIMEOUT _ERROR); 
requestMsg.flags I= PLEASE_ACKNO\VLEDGE; 
Send(requestMsg, serveriD ); 

} else if (status = ACKNO\VLEDGMENT) { 
wait = wait * 2; 

} else { 
return( SUCCESS); 

} 

Figure 4. This is the algorithm the client process uses to send its request 
message to the server and wait for the reply message. The Receive() pro­
cedure blocks the client process until a message arrives, or until the wait 
period passes. 
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host, not to a particular server process; Section 4 discusses this issue in more 

detail. Also, each time an acknowledgment message is received the timeout 

period is doubled to give long-running service procedures a chance to complete 

without excessive overhead from retries. 

3.2. RPC Sequence Numbers 

The server kernel has a passive role in the network protocol; it leaves it up to 

the client process to make sure that it successfully gets the results of the service 

procedure. All that is needed on the server is a way to distinguish between new 

request messages and duplicate request messages sent when the client process 

retransmits. The server also needs to detect old messages if the network allows 

messages to get sidetracked so they arrive out of order. 

The network layer on the server uses a sequence number in the control sec­

tion of each message to determine if an incoming message applies to an old 

(invalid) RPC, the current RPC, or a new RPC. (Here it is assumed that there is 

only one client process so that there is only a single sequence of RPCs that the 

server has to monitor. This restriction is removed in Section 4.) The sequence 

numbers of all the messages associated with a particular RPC are the same, and 

the start of a new RPC is signaled by a message with a new sequence number. 

The client chooses the sequence numbers so they increase in successive RPCs. 

This allows the server to identify old (sidetracked) messages because their 

sequence numbers are lower than the current sequence number. The way clients 

initialize their sequence number when they boot is discussed in Appendix B. 

3.3. Large Data Transfers 

One of the main uses of the Sprite RPC system is the transfer of data blocks 

by Sprite's network filesystem. This sub-section describes how data blocks larger 

than the network's maximum packet size (about 1500 bytes with Ethernet) are 

transferred efficiently. The alternatives are to use several RPCs that each 

transfer an amount that can fit in one network packet, or to extend the network 

protocol so that more data can be transferred in a single RPC. Using several 

RPCs is less efficient because there is more overhead: each RPC has a fixed 

amount of overhead that comes from setting up the request message, waiting for 

the reply message, a process switch on both the client and the server, and other 

book-keeping like setting up timers. If the protocol is extended to be able to 

transfer more data in a single RPC, the fixed overhead is amortized over more 

data, and the transfer of a large block of data is faster. The improvement in per­

formance by sending more data at one time has been presented in studies by 

Lazowska et. al. [LaZ84] and is also shown in the performance results given in 

Section 6. 
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Request 

Figure 50 This shows a block transfer of 4 Kbytes of data in a single RPCO The 
request message is divided into 4 fragments that each contain 1 Kbyte of data. 
Each fragment is sent in its own network packet, and the l'th fragment is 
identified by a bitmask with the l'th bit set. All the fragments get sent before 
waiting for the reply message which acknowledges the receipt of all the fragments. 

3.3.1. Message Fragments 

Transferring a large data block in a single RPC is done by dividing large 
request and reply messages into fragments. Each fragment is sent in a network 
packet, and all the fragments are implicitly acknowledged by the next message 
from the receivero Figure 5 illustrates fragmenting during an RPC that transfers 
a 4 Kbyte data block to the servero The request message gets divided into 4 frag­
ments, and the server returns a reply after receiving all the fragmentso Each frag­
ment does not have to be acknowledged individually, and this contributes to the 
improvement in performance with fragmenting. The other main performance sav­
ings is that fragments are re-assembled into complete messages at interrupt timeo 
This means there are the same number of process switches in an RPC that 
transfers a small amount of data and in one that uses large fragmented messageso 

Each fragment contains four pieces of control information that are used dur­
ing reassembly: the amount of data it contains, the offset of the data within the 
message, the number of fragments in the message, and a fragment identifiero The 
data size and offset allow the fragment to be copied into its correct location in the 
message's buffer when it arrives. This format also means that the loss of a frag­
ment in the middle of a message does not prevent subsequent fragments from 
being copied correctly. 

A fragment is identified by a bitmask: the I'th fragment of a message has the 
I'th bit of its identifying mask set. As fragments arrive, their identifying bitmask 
is or'd into a summary bitmask to record their arrival. The summary bitmask 
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indicates when the message is complete, and it detects if a fragment is a duplicate 
that arrived because of a retransmission. Duplicate fragments can be discarded 
without having to copy them into their destination buffer. 

3.3.2. Lost Fragments 
Lost message fragments raise a few issues, and the Sprite RPC system doesn't 

not yet solve all the problems in the best way. This sub-section describes the 
problems and the trade-offs, and Appendix C details the way the Sprite RPC sys­
tem currently handles the situation. 

The simple reaction to lost message fragments is to retransmit the entire mes­
sage. If the receiver is a slower machine, however, this strategy may not work. 
This is because the fragments are sent out with almost no delay in between them 
so a slow receiver, or one with a poor network interface, may always drop the last 
fragments of a message. This problem is evident in Sun's network filesystem 
[NFS85] and RPC protocol [RPC85J, and it is compounded because the protocol 
discards a message if any fragments are lost. Sun has two different machine 
types, and the newer Sun-3 is much faster than their Sun-2 model. The slower 
Sun-2 is not able to successfully receive a message that requires more than two 
network packets if it is sent from a Sun-3. To work around this problem, the Sun 
network filesystem limits the size of blocks sent from Sun-3's to Sun-2's so that at 
most two packets are used per message. 

Another way to handle missing fragments, and the way the Sprite RPC sys­
tem currently does it, is to optimize the re-send so that only the missing frag­
ments are transmitted. This handles the situation of sending to a slow receiver, 
but it adds some complexity to the protocol. The receiver must tell the sender 
which fragments it has received. It does this by returning its summary bitmask to 
the sender when it sees that it has lost fragments; this is called a partial ack­
nowledgment. The receiver also has to set up a timeout period after which it can 
check for missing fragments. While partial re-send will eventually get all the frag­
ments to a poor receiver, it may require several iterations if the receiver can get 
only a couple fragments from each re-send. Also, as described in Appendix C, 
there are some messy details that crop up in the current implementation. 

The final alternative is to re-send the message with a delay in between the 
output of each fragment. This gives extra time to a slow receiver, or to one that 
is just overloaded. The Sprite kernel has a call-back queue that is used to call 
procedures at specified times in the future. This can be used to set up calls to 
output the fragments at regular intervals. AJso, delays could be used in conjunc­
tion with partial re-send. In this case, the first time a message is sent there would 
be no delay between fragments. Then, if some fragments were lost, the missing 
fragments would be re-sent with a delay in between them to increase the chance 
that the receiver gets them. The RPC system does not currently use delays, 
although they look promising. Future work includes experimentation with these 
ideas to determine a good solution to the problem of lost fragments. 
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4. Many Clients and Many Servers 
The last section presented the RPC network protocol in terms of a single 

client process and a single server host with one server process. This section 
extends the RPC system to a world of many client and server hosts. This section 
also presents extensions that support concurrency within each host so that a client 
kernel can have more than one process making a remote procedure call at the 
same time, and so that a server kernel can service many clients at one time. 

4.1. Client Channels 

The Sprite RPC system uses client channels to connect processes on a client 
host to a server process on a server host. The use of channels reduces the state 
information that a server has to keep. A server does not have to know about all 
the processes which access the server, only about the client channels they use. 
Each host keeps a few client channels so that more than one process can make 
RPCs at the same time, and any process can use any free client channel. A sim­
ple system of two client hosts and one server host is shown in Figure 6. The effect 
of a client channel is to serialize the RPCs from the various processes on the client 
host that use the channel so that the network protocol can use implicit ack­
nowledgment; the next request message from the client channel implicitly ack­
nowledges the last reply message sent to the channel. 

Client Host A 
Channels 

0 
0 • • • 

Client Host B 

I Channels 

10 
0 • • 

0 

/ 

Server Host 

Server 
Processes 

0 

0 
<l.o 

• • • 

Figure 6. A server host keeps several server processes so it can handle RPC re­
quests from more than one client. A client process is connected to a server pro­
cess over a client channel, and each kernel has more than one client channel so 
more than one of its processes can do RPC at the same time. RPCs are serialized 
over a client channel so the network protocol can use implicit acknowledgment. 
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4.2. Multiple Server Processes 

A server kernel keeps many server processes so that it can execute service 
procedures for many clients at one time. It is not practical, however, for a server 
host to have a different server process for every possible client channel in the sys­
tem; Sprite is designed for an environment of a few hundred hosts and each one 
has several client channels. Instead, a server host keeps a limited number of 
server processes and multiplexes them between the client channels that use the 
server. This can be done because usually only a small number of client channels 
are using the server at any one time. 

A server host assigns a server process to a particular client channel for a 
series of RPCs. When a request comes from a client channel that has no server 
process, the network layer on the server assigns a free server process to the client 
channel. The server process remains assigned to the client channel until the net­
work layer on the server notices that it has not received a new request message 
from the channel recently. At that point, the network layer sends a probe mes­
sage to the client channel that requests an explicit acknowledgment for the last 
reply to the channel. The explicit acknowledgment from the client channel ends 
the series of RPCs between it and the server process so the server process is free 
to be re-assigned to an active client channel. 

A server only keeps track of the RPC protocol for those channels to which it 
has assigned a server process, and the state for the RPC protocol between a chan­
nel and a server process is kept in a data strucure associated with the server pro­
cess. To help the network layer on the server match a message from a client 
channel with the correct server process, all messages from a client channel give 
the ID of the server process that was used to service the channel's last request. 
The ID is returned to the client with each reply and explicit acknowledgment so 
that it can provide the information for the next RPC. Most of the time the server 
process suggested by the client channel is correct. If the channel has been inac­
tive, however, the server process has probably been re-assigned to another active 
client channel. If this is the case, the server searches its pool of server processes 
for a free one and assigns it to the client channel. 

The use of just a few client channels by a client host, as opposed to a client 
channel for every process, for example, increases the effectiveness of assigning a 
server process to a client channel for a series of RPCs. The RPCs from all the 
processes on the client host are concentrated onto a few channels so the rate at 
which RPCs are done on each channel is more than the rate from each individual 
process. This reduces the amount of time the server process for the channel waits 
for a new request, and it also reduces the chance that the server process will get 
taken away and assigned to a more active client channel. 

The network layer on the server checks periodically for server processes that 
are assigned to inactive channels. It schedules a scavenging procedure to be called 
about once a second that scans the pool of server processes for ones than have 
been idle since the last time it checked. If a server process has been idle then the 
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scavenger sends a probe message to the client channel. 

The rate at which the server processes are checked by the scavenger has to 

be low enough so that it doesn't add too much overhead to the system, but is also 

has to be fast enough so that server processes can be reclaimed during times of 

peak load. It is important to have free server processes because the server dis­

cards requests if there is no free server process. This problem, client starvation, 

can be made rare by keeping enough server processes to handle peak loads. For 

example, a prototype of Sprite's network filcsystem was implemented in a system 

of about 12 workstations, and the main file server kept 8 server processes. The 

system was in daily use for several months and no client requests were ever dis­

carded. Still, more experience is needed with Sprite in a system with a large 

number of hosts to be able to tune the rate at which server processes are 

reclaimed and to determine how many server processes should be kept. 

4.3. Broadcast RPC 

The final addition to the RPC protocol for a real environment of many 

servers is a broadcast form of RPC. Broadcast RPC is implemented by broad­

casting the request message to all hosts (Ethernet supports broadcasts), giving the 

first reply to the client process, and discarding any subsequent replies. All hosts 

have to process broadcast messages to some extent so broadcasts are expensive to 

the network community. Because of this, the RPC system does not retry if there 

is no reply after the timeout period. Instead, the client process is returned an 

error so that it can retry the RPC at a rate that does not saturate the network. 

These semantics of the broadcast RPC make it suitable for clients that need to 

locate server hosts. It is not a reliable broadcast, one that ensures that all hosts 

have received the request. That is rather expensive to implement and it is not 

required by any Sprite services. 

5. Message Handling 

The previous two sections have glossed over the details of how the network 

layer handles messages. This section describes how the network layer is organized 

to handle messages efficiently. The network layer is divided into the network 

module and the RPC dispatcher. The network module sends and receives packets 

over the network, and it is independent of the protocol sending the messages. 

The RPC dispatcher is called by the network module at interrupt time when a 

packet for the RPC protocol arrives. 

The network layer does three things to transmit messages efficiently. The 

first is that, when possible, the network module uses the basic Ethernet protocol 

[MeB76] to send network packets between machines. The second is that part of 

the RPC network protocol is implemented at interrupt time by the RPC 

dispatcher so some messages can be handled without incurring the cost of a pr<r 

cess switch into a client or server process. The third is that the buffering system 

that the network module and the RPC dispatcher communicate with is designed 
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to minimize copies in large block transfers. 

The advantage of using the basic Ethernet protocol is that it is a bare-bones 
protocol that is efficient to implement. The disadvantage is that packets can only 
be transmitted over a single Ethernet cable. The RPC protocol does not depend 
on the protocol used by the network module, however. The network module uses 
the basic Ethernet protocol to reach hosts on the same ethernet, and more com­
plex protocols to reach Sprite hosts on other networks. Currently the network 
module only implements the basic Ethernet protocol, but the Internet Protocol(IP) 
[IPSO], a datagram protocol that handles packet routing in an internet, will be 
supported in the future. 

5.1. The RPC Dispatcher 
The RPC dispatcher is called at interrupt time by the network module to 

handle an arriving packet. The dispatcher is divided into the client dispatcher 
and the server dispatcher because the RPC protocol is asymmetric. Three general 
cases for both dispatchers are listed here, and the details of what happens in the 
client and server dispatcher are discussed below. 

( 1) The packet is a complete message needed by the receiving process. The 
dispatcher copies the packet into buffers owned by the receiving process and 
notifies the process that it has received a message. 

(2) The packet is a message fragment. The dispatcher copies the fragment to its 
offset within the message buffer and notifies the receiver only if the message 
is complete. 

(3) The packet is a message that is not needed by the receiving process. The 
dispatcher handles the message according to the RPC protocol without giving 
it to a process. This is done either because there is no process waiting for the 
message, or because it is more efficient for the dispatcher to handle the 
packet. This saves the cost of copying the message to the receiver's buffer 
and switching to the receiving process. 

The client dispatcher passes replies and explicit acknowledgments to client 
processes without taking any special action. Other messages, however, are pro­
cessed by the client dispatcher, and the client process (if any) is not notified that a 
message arrived. For example, the dispatcher handles probe messages that the 
server sends after the client channel becomes in-active. At this point there is no 
process using the channel, or it is being used for RPC with a different server, so 
the dispatcher returns the explicit acknowledgment to the server. The client 
dispatcher also handles partial acknowledgments as described in Appendix C. 

The server dispatcher only passes request messages to server processes. The 
other kinds of messages - duplicate requests, probes, and acknowledgments -
are handled by the dispatcher because the server process may be busy executing a 
service procedure. Even if the server process is not busy, handling these other 
kinds of messages in the dispatcher saves the cost of a process switch and 
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Figure 7. This figure depicts message traffic from the server's point of view. 
The server dispatcher passes new requests to server processes which later return 
reply messages to their clients. The dispatcher also takes care of returning expli­
cit acknowledgments and re-sending replies that clients have lost. 

simplifies the server processes. This means that the special cases in the RPC pro­
tocol on the server side (things like re-sending replies and returning explicit ack­
nowledgments) are implemented by the server dispatcher instead of the server 
processes. See Figure 7. 

Before the server dispatcher can take any action for the server process, how­
ever, it must decide which is the correct server process. This is because when a 
message comes from a client channel it might not specify the correct server pro­
cess. It does include the ID of the server process that handled the previous 
request from the client channel, but as was described in Section 4.2 the server 
process may have been re-assigned to another client channel. It is the job of the 
server dispatcher to check that the server process is still assigned to the client 
channel, and to choose a new server process if necessary. 

5.2. Building Messages 

The RPC system supports the gradual assembly of a message as it is passed 
through the various layers in the implementation. A message starts forming in 
the stub procedures as they package up their parameters. A stub procedure then 
passes the message to the network layer which adds control information to the 
front of it. Finally, the network module adds low-level addressing information to 
the message for transmission on the network. One goal of the RPC system is to 
be able to build messages gradually without having to re-copy a message each 
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time information is added to it. 

To allow a message to be built up gradually, the various pieces of a message 

are_ each stored in separate buffers, and the buffers are linked together in a list. 

See Figure 8. Stub procedures start creating a message by setting up a list of one 

buffer that contains the parameters in the message_ The network layer adds con­

trol and addressing information to the front of the message by pre-pending buffers 

to the list_ Finally, the network module uses a DMA Ethernet controller, the Intel 

82586, that copies the data from the list of buffers directly to the network. This 

means data is copied only one time, from its buffer to the network. 

The use of a buffer list also makes setting up a fragmented message easy. A 

buffer list for the fragment is set up that references only the part of the message 

data that goes into the fragment. This means that the data for a fragment does 

not have to be copied into a new buffer. The third buffer in Figure 8, for exam­

ple, might really be a section of a much larger buffer_ 

5.3. Unpacking Messages 

The counter-part to the problem of gradually forming messages is the prob­

lem of efficiently unpacking the parameters from a message. A simple approach 

ends up copying parameters three times: the network hardware copies a message 

once from the network to a buffer in the network module, the dispatcher copies 

RPC Message 

Transport 
Header 

RPC 
Control 

Information 

Param 1 

Param 2 

Param 3 

Buffer List 

Figure 8. A message has three sections: the transport header, RPC control in­

formation, and the parameters of the service procedure. The sections are kept in 

separate buffers to they can be set up by different layers of the implementation. 

The network module uses a DMA interface that copies directly from the list of 

buffers to the network. 
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Figure 9. This shows a buffering system that requires copying tbe parameters in 
an arriving message three times, each arrow represents a copy. 

the parameters in the message a second time to another buffer owned by the stub 
procedure, and the stub procedure copies each parameter a third time to the final 
location of the parameter. This is shown in Figure 9. Copy costs become impor­
tant with large parameters; it takes about .8 milliseconds to copy I Kbyte on a 
Sun-2. 

It is tempting to try have only a single copy by having the network hardware 
copy the parameters directly (via DMA) from the network to their final locations. 
This is not practical, however, because it requires that the system anticipate what 
kind of message will arrive next so it can set up buffers ahead of time, and it 
requires that the hardware interpret some control information in each message 
that specifies .the size of each parameter. It is also tempting to pass the network 
module's buffer to the stub procedure in order to save a copy. This is not done, 
however, because the network module can save on setup costs by keeping a small 
number of buffers and recycling them quickly. 

The RPC system takes an intermediate approach that saves a copy for the 
largest parameter in a message. This is an optimization oriented towards the 
block transfer requirements of the filesystem; the read and write service pro­
cedures have a few small parameters and a single large data blo~k. The parame­
ters in a message are divided into two sections, and the dispatcher copies the two 
sections to separate buffers. This allows the stub procedures to set things up so 
that the dispatcher copies the large data block in a message directly to its final 
location. This is illustrated in Figure 10. 
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Figure 10. The parameters in a message are divided into two sections and the 
dispatcher copies the two sections to two separate buffers. The stubs put a large 
data block in the second section and set up the buffers so that the dispatcher 
copies the data block directly to its final location. 

The parameters in messages being sent out are also divided into two sections, 
and this allows the same sort of optimization. For messages being sent out, a stub 
can set things up so a large data block is copied directly from its location to the 
network. This means that a large data block only gets copied 3 times as it is 
moved from the client process's buffer across the network to the server process's 
buffer; there is one copy on output, and there are two copies on input. Appendix 
D has a client and server stub procedure that illustrate the use of two data areas. 

A more general version of this scheme would be to have a variable amount of 
control information in each message that specified the number and size of each 
parameter. This would allow the dispatcher to copy all the parameters to their 
final locations instead of copying some to an intermediate buffer. The RPC sys­
tem uses a fixed format, however, because it simplifies the implementation and 
still optimizes the common case of one large parameter and several small ones. 

Implicit in this discussion is that receivers have to set up buffers before the 
message arrives. Clients can do this easily because they know what to expect in a 
reply message. Servers, however, have to keep buffers ready that are large 
enough to handle the largest request message. The main advantage of pre­
allocated buffers is that receivers can optimize the buffering for the largest param­
eter. Another benefit is that memory allocation (if any) is not in the critical path 
of message handling; in clients it is done before the RPC, and in a server process 
it is done after the reply message has been sent. 
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6. Performance 

This section presents some benchmarks and assesses the cost of different parts 
of the RPC system. The benchmarks were executed on the Sprite operating sys­
tem in spring of 1986. Sprite at that point supported multitasking, priority 
scheduling, user programs, virtual memory, and an incomplete (client side only) 
version of the filesystem. The kernel was still under development and was not yet 
used for day-to-day work. 

The hardware used for the benchmarks were Sun-2's with Intel 82586 Ether­
net controllers on a 10 Megabit Ethernet. The Intel controllers are very good and 
rarely lose packets. They are configured with 18 buffers for receiving packets so a 
packet is only lost if 19 or more packets arrive back-to-hack. (Sprite also runs on 
machines with 3Com ethernet controllers, but they can only buffer two packets 
and were not used in the performance benchmarks.) 

6.1. RPC Overhead and Bandwidth 

The basic cost of RPC and the bandwidth of the system were measured by 
timing a sequence of Send RPCs. The Send remote procedure call just sends a 
block of data from the client to the server. The amount of data sent was varied 
from 0 to 14 Kbytes, and three runs were made at each different size. A send of 
zero bytes measures the fixed overhead in an RPC, and sizes greater than 1 Kbyte 
measure the effects of fragmenting. 

The time to send different amounts of data is plotted in Figure 11. Each test 
was done three times so there are three points plotted at each size. Each time is 
the elapsed real time divided by the number of RPCs done; this averages in over­
head from all layers of the implementation as well as overhead from other parts of 
the Sprite kernel like priority scheduling. The effect of fragmenting is evident in 
the steps that occur just past each multiple of 1 Kbyte. (Actually, messages up to 
about 1400 bytes can fit in one packet. Fragmenting is still done on 1 Kbyte 
boundaries, but fragmenting isn't turned on until a message won't fit in one 
packet. That's why the first step in the graph occurs past the 1 Kbyte point.) 
Other than the steps, the plot shows a nearly constant increase in the time for 
each additional 1 Kbyte of data sent, about 2.4 milliseconds/Kbyte. This slope 
indicates a limiting bandwidth of 415 Kbytes/sec as the size of the packets is 
increased. Saving a copy as described in Section 5.3 saves .8 msec/Kbyte. If this 
were not done, the slope of the graph in Figure 12 would be 3.2 msec/Kbyte, and 
the limiting bandwidth would only be 310 Kbytes/sec. 

As plotted in Figure 12, the bandwidth starts to level out around 380 
Kbytes/sec, which is about 30% of the Ethernet's 10 Mbit capacity. This sup­
ports Lazowska's result from tests on similar hardware that the server's CPU is 
the bottle-neck and the network is underutilized [LaZ84]. Even blocksizes of 4 
Kbytes and 8 Kbytes result in good bandwidth, about 275 and 330 Kbytes/sec 
respectively. If the system was limited to 1 Kbyte messages, ie. fragmenting was 
not implemented, the maximum bandwidth would be about 135 Kbytes/sec. The 
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Figure 11. The time for a Send RPC with various amounts of data. Each test 
was done three times so there are three points plotted at each size. The times are 
the average of the real time required to perform a series of RPCs, including sys­
tem overhead. The system fragments on 1 Kbyte boundaries; this is evident in 
the steps in the graph. The overall slope of the graph is 2.4 milliseconds/Kbyte. 
This indicates a limiting bandwidth of 415 Kbytesfsec. 
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Figure 12. A plot of bandwidth vs. message size. The bandwidth increases with 

message size but it starts to level out around 380 Kbytes/sec. The notches in the 

bandwidth occur each time an additional fragment is needed to send the request 

message. 

bandwidth from the Send RPC represents an upper bound on the bandwidth 

available to Sprite's network filesystem, and it is comparable to the effective disk 

bandwidths, 220 and 440 Kbytesfsec, reported by McKusick [McK84] for the 

4.2BSD UNIX filesystem. 

6.2. Comparison to the V system 

The V system is a message passing system that has been tuned for high per­

formance. Its performance is a lower bound on the overhead that the RPC sys­

tem has from its use of messages. Table 1 lists some performance results from V 

[Che84] and the corresponding results for Sprite; both sets of results come from 

tests on Sun-2 workstations. As the null send operation indicates, there is a con­

siderable amount of overhead in the Sprite implementation of RPC. About 2.8 
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Sprite vs. V system 

Operation Sprite V system 

Null send 5.8 2.2 

1024 byte send 7.5 5.8 

Table 1. The performace of similar operations in the V-system and Sprite. 

About 2.8 msec of the 5.8 msec of Sprite overhead is due to message handling. 

The rest is from other parts of the RPC system. 

msec of this overhead is directly related to message handling, and this close to the 

cost of sending a message and getting a reply in the V system. This means that 

the message handling as described in Section 5 is ok, but that other parts of 

Sprite need tuning. 

6.3. Contributions to Overhead 

A more detailed tracing was done to determine the time spent in various 

parts of the RPC system. A time-stamped trace was made by inserting calls to a 

trace routine at various points in the code. The trace information recorded 

included a time-stamp, a type, and possibly a copy of the RPC header part of the 

current message. (The trace was used for debugging as well as performance 

analysis.) Recording the trace information slowed down the RPCs, so the cost of 

tracing was measured and subtracted out of the results presented here. 

The test performed during the detailed tracing was a series of Echo RPCs; 

the client sent 128 bytes to the server which then returned them. Two sets of 

trace results are given: initial results done before any system tuning was done, and 

another set that corresponds to the performance plotted in Figures 11 and 12. 

The initial trace results are given in Table 2. The Average column is an 

average over 5 traces, including system overhead. The Best column estimates the 

time required for each step in the absence of external events. The estimates were 

made by looking at the raw trace records and picking the most common time for 

a task. Typically a task had the same time in most RPCs, but occasionally an 

external event would slow down the task. The scheduler, for example, wakes up 

once a second and recomputes priorities. 

The total estimated overhead (from the Best column) was about 7 400 

microseconds. The Echo tests were also done with no trace records kept, and the 

average time for each Echo in that case was 8400 microseconds. Some of the 

remaining 1000 microseconds is spent in the network module when receiving the 

message. The rest is probably due to errors in using the Best column to estimate 

what happened in the absence of tracing. 

These early results indicated that the process switch time and the time to 

output a packet were high. Switching from the dispatcher to the waiting process 

was llOO to 1300 microseconds, and a complete process switch was taking about 
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Initial Trace of the Echo RPC ( 128 bytes echoed) 
Times in microseconds 

Where Task Average Best 
Client Start 

Allocate Channel 329 282 
Message Setup 392 286 
Request Output 1252 1148 
(Sub Total) 1973 1716 

Server Request Arrives 
Server Chosen 128 128 
Server Notified 826 714 
Server Starts 2516 1275 
Reply Output 1606 1445 
(Sub Total) 5076 3562 

Client Reply Arrives 
Client Notified 862 862 
Client Starts 1198 1145 
Client Returns 133 107 
(Sub Total) 2193 2114 
Total Overhead 9242 7392 

Table 2. The early results from a time-stamped trace of an Echo RPC. The 
effect of taking the trace records themselves has been factored out of the data. 
The Average column is an average over 5 traces, while the Best column is an esti­
mate of the best time for the task. 

2200 microseconds! This was due to two expensive operations done during a pro­
cess switch. The first is a weighted CPU usage computation that r.?quires 
software multiplies and divides. The second is the setting up of an alarm for a 
time-slice; this requires reading a real-time counter, converting to seconds, and 
enqueuing a call-back routine. The time spent in the network module was also 
high. Some of this was due to the complex interface to the Intel controller, and 
some was due to excess error checking in the initial version of the code. 

Both process switching and the network module were cleaned up in an effort 
to improve performance. The timer module was changed to work directly with 
chip intervals instead of seconds. The CPU usage computation was simplified. A 
new priority was added that eliminated the usage computation and the setting up 
of the time-slice during process switch, and server processes were set to run at this 
high priority. The network module was tuned by removing excess error checking, 
and by simplifying various data structures so they could be set up at system 
start-up. For example, the addresses passed to the Intel controller need to be byte 
swapped, and this can be done once because the network module re-uses the same 
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buffers. 

The average of an untraced set of echoes improved from 8400 microseconds 
to 6050 usee after the these changes to the kernel. The results of the new detailed 
traces are given in Table 3. The best time to output a packet decreased about 
520 usee on the server, and about 564 usee on the client. Another 915 usee is 
saved during the process switch to the server process because no CPU usage com­
putation is done, and because no time-slice is set up. Also, allocation of the client 
channel sped up because it involved getting a monitor lock; the locking code has 
been re-written in assembly language. 

However, the cost of handling the message on the client increased in spite of 
(or because of) the changes to the timer module and the CPU usage computation. 
The time on the client to set up the message is still high, and so is the client's 
context switch time. (This is the "Client Starts" entry in the table.) The client 
process runs at a normal priority so there is still a lot of scheduling overhead at 
process switch time. This poor performance reflects the state of the kernel's 

Current Trace of the Echo RPC (128 bytes echoed) 
Times in microseconds 

Where Task Average Best Difference 
Client Start (156) (132) (+52) 

Allocate Channel 293 236 -46 
Message Setup 473 350 +64 
Request Output 605 584 -564 
(Sub Total) 1371 1170 -546 

Server Request Arrives (7293) NA 
Server Chosen 215 215 +87 
Server Notified 793 793 +79 
Server Starts 541 360 -915 
Reply Output 953 925 -520 
(Sub Total) 2502 2293 -1269 

Client Reply Arrives (4972) NA 
Client Notified 1087 1087 +225 
Client Starts 1514 1410 +265 
Client Returns 176 165 +58 
(Sub Total) 2777 2662 +548 
Total Overhead 6650 6125 -1267 

Table 3. Trace results after improving the server's process switch time and tun­
ing the network module. The format of the table is the same as Table 2, except 
that the Difference column gives the difference between the Best column in Table 
2 and Table 3. 
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development; most of the effort has been in the addition of new features, and 
much less effort has been spent analyzing and improving the performance. 
Micro-benchmarks that test various kernel operations need to be developed so 
that costly operations can be identified and tuned. 

7. Comparisons to Other Systems 
The Sprite RPC system incorporates two important features from the RPC 

work by Birrell and Nelson [BiN84] for the CEDAR/MESA system. The first is 
that it uses a special purpose network protocol that only uses 2 messages per RPC 
in the common case. The other feature is that the service procedure is executed 
at most one time during an RPC. This is because the reply message is ack­
nowledged, either implicitly or explicitly. This allows Sprite services to imple­
ment locking and other operations that cannot be repeated. The main difference 
between the two systems is the way clients and servers are connected. In the 
CEDAR/MESA system the clients and servers are user processes that are bound 
together through the Grapevine [Bir82] name service. In the Sprite RPC system 
the binding is between a client channel and a server process. This binding is 
dynamic and is controlled by the server so it can allocate its server processes to 
active channels. 

The Sun RPC [RPC85] system differs in that it uses existing protocols to 
transport its messages. It can use either TCP [TCP80], which is a reliable byte 
stream protocol, or UDP [UDP79], which is an unreliable datagram protocol. 
These may be less efficient than a special purpose protocol, but they can be used 
in inter-networks. Another important difference is that reply messages are not 
acknowledged. Instead, a server caches its recent replies and re-sends them when 
it detects a retransmission by the client. If the cache fills up, the oldest cached 
replies are discarded; this means that a service procedure could get executed more 
than once per RPC. Sun takes this approach because it prefers to implement 
stateless servers. A stateless service can have its service procedures executed 
more than once with no ill effect. Also, a stateless server can crash and re-boot 
and a client only experiences a delay; no state is lost. However, it also means that 
Sun's network filesystem [NFS85] does not implement file locking, for example. 

Other systems have paradigms other than RPC for communication between 
hosts. The V kernel [Che84] is a good example of an efficient message passing 
kernel. Its performance is considered nearly optimal [LaZ84] so it provides a good 
standard with which to compare. Also, its use of messages is similar to the way 
the RPC protocol uses messages; the send operation is followed immediately by a 
receive operation that blocks the process until a reply arrives. These semantics 
were found to be useful and less error-prone than more arbitrary uses of messages. 

Reliable byte stream protocols, TCP for example, are used by many systems 
for network communication. A byte stream protocol is built on top of an unreli­
able datagram protocol as is the Sprite RPC protocol. Its concern, however, is a 
reliable, uncongested, bi-directional flow of bytes between two points, while the 

- 24-



Sprite RPC 

concern of the RPC protocol is the efficient exchange of the request and reply 
message. Note that it is possible to implement an RPC protocol on top of byte 
streams, but probably with less performance. The Sun RPC system can use TCP, 
for example. 

8. Summary and Conclusions 

Sprite uses remote procedure call as its basic form of network communica­
tion, and, for better performance, RPC is implemented on top of a special-purpose 
network protocol. Performance is emphasized so that remote services will be 
cheap enough to be used frequently. Three features of the RPC implementation 
are designed to increase its performance. (a) Implicit acknowledgment is used to 
reduce message overhead. (b) The buffering system is optimized for block 
transfer; a data block is only copied 3 times when going from a client process's 
buffer over the network to a server process's buffer. (c) Fragmentation, while it 
adds some complexity to the system, increases the performance of large data 
transfers. 

Of these three techniques, implicit acknowledgment provides the best perfor­
mance increase for RPCs that transfer a small amount of data. In this case the 
message overhead is high compared to the total time of the RPC so it is 
worthwhile to eliminate explicit acknowledgment messages. The other perfor­
mance related features, fragmenting large transfers and saving a copy on large 
data blocks, significantly increase performance of large data transfers. With frag­
menting the system achieves a bandwidth of 380 Kbytes/sec, while with no frag­
menting the best bandwidth is only 135 Kbytes/sec. Eliminating one of the copies 
for large data blocks saves .8 msec/Kbyte, which is about one third of the margi­
nal cost of sending each additional Kbyte (2.4 msec/Kbyte). 

The Sprite RPC system differs from most other RPC systems in that it is 
used only for remote procedure call from one operating system kernel to another. 
A client process directs RPC requests to a server host, and it does not have to 
worry about setting up connections or addressing particular server processes; 
client channels and server processes are not visible outside the RPC system. 
Internally the RPC system sets up tempory bindings between client channels and 
server processes so that successive requests through a client channel implicitly 
acknowledge the server's replies. This arrangement also limits the amount of 
state information that the server side of the RPC system has to maintain. A 
server only has to keep track of channels that are activly using the server, and it 
does not have to know about all the client processes in the system. 

Finally, there are some limitations to this RPC system. It is used by the 
Sprite kernel to execute service procedures in other Sprite kernels; there is no 
direct way to invoke user-level service procedures, although the RPC system 
could be used to implement that. Also, there is no stub compiler; the number of 
different service procedures is limited so it is not too painful to hand-code the 
required stubs. 
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Appendix A 
Message Control Information 

This appendix contains the format of th.e control information included in 
each message, and a short explanation of each field. The control information 
comes after the header used by the low level transport protocoL For the basic 
Ethernet protocol, for example, there is a 14 byte header: 6 bytes of destination 
address, 6 bytes of source address, and a 2 byte protocol identifier. 

Per Message Control Information 
Field Width 

Flags 16 bits 
Client Host ID 32 bits 
Server Host ID 32 bits 
Channel ID 16 bits 
Server Process ID 16 bits 
RPC Sequence Number 32 bits 
Number of Fragments 16 bits 
Fragment Mask 16 bits 
RPC Command/Error 16 bits 
BootiD 32 bits 
Data 1 Size 16 bits 
Data 2 Size 16 bits 
Data 1 Offset 16 bits 
Data 2 Offset 16 bits 
Total Size 36 bytes 

Table AL The layout of the control information that is at the beginning of 
every message sent by the RPC protocol. The type of the message is encoded in 
the Flags field, and for simplicity all fields are present in all types of messages. 

Sprite RPC 



Sprite RPC 

Flags - 16 bits 
The Flags field includes the message type and some flags which may or may 
not be present. The message types are REQUEST, REPLY, 
PARTIAL_ACK, and EXPLICIT_ACK. The flags are SERVER (the mes­
sage is for a server process), ACK_REQUESTED (return an explicit ack­
nowledgment message to the sender), ERROR (the service procedure 
returned an error), and LAST_FRAGMENT (this is the last fragment of the 
message). 

Host IDs - 32 bits each 
The client and server Sprite host IDs uniquely identify the client and server 
hosts. Currently Sprite IDs are assigned locally, but in the future they may 
follow the Internet addressing standards [IPSO]. 

Channel ID - 16 bits 
Identifies a particular client channel on the client host. 

Server Process ID - 16 bits 
In messages from the server, this is the ID of the server process that is han­
dling the request. In messages from the client, this is the latest server process 
ID received from the server; it is used as a hint by the dispatcher on the 
server to quickly match incoming messages to the correct server process. 

RPC Sequence Number- 32 bits 
The sequence number is the same for all messages pertaining to the same 
RPC. 

Number of Fragments - 16 bits 
This is non-zero if the message is fragmented; it indicates how many frag­
ments make up the message. 

"Flags" Field Encoding 
Name Bits Comment 
ACK_ REQUESTED Ox0001 Acknowledgment of message requested 
LAST_ FRAGMENT Ox0002 This is the last fragment 
ERROR Ox0008 Error return from the service procedure, 

the command field contains the error code 
SERVER Ox0010 Packet is for a server process 
REQUEST Ox0100 Normal command request 
PARTIAL_ ACK Ox0200 A partial acknowledgement 
EXPLICIT_ ACK Ox0400 An explicit acknowledgement 
REPLY Ox0800 A reply from a server 

Table A2. The encoding of the Flags control field. 
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Fragment Mask- 16 bits 
The I'th fragment of a REQUEST or REPLY message is identified by setting 
the I'th bit of this field. Messages are limited to 16 fragments. This field is 
zero if the message is not fragmented. If the message type is 
PARTIAL_ ACK, this field contains the summary bitmask that indicates 
which fragments the receiver has. 

RPC Command/Error - 16 bits 
This field contains the ID of the remote service procedure to execute. In 
REPLY messages this field contains an error code if the ERROR flag is set. 

Boot ID - 32 bits 
This is a time-stamp chosen by the client host when it re-boots. When this 
changes from one RPC to the next the server knows the client has re-booted. 

Data Sizes - 16 bits each 
These fields indicate how much data is in the two data parts of the message. 

Data Offsets - 16 bits each 
These fields indicate the relative position of the data areas in the complete 
message. For non-fragmented messages these fields are always zero. 



Appendix B 
RPC Sequence Numbers and Client Crashes 

A client kernel initializes its sequence number at boot time (to 1) and then 

increments it for each new RPC by a client process. The servers in the system 

need to be informed somehow that the client has rebooted and reset its sequence 

number; otherwise they might discard the client's messages because of their low 

sequence numbers. Instead of using a reliable broadcast to reach all the servers in 

the system, or doing a special RPC with each one, the protocol uses a time stamp, 

called the boot ID, to detect when a client has rebooted. The client kernel initial­

izes its boot ID to the real-time clock at boot time, and it doesn't change until the 

next reboot. When a server sees a new boot ID from a client, it resets its notion 

of the client's current sequence number. 

Client's with no real-time clock need some other way to initialize their boot 

ID to value that is distinct from what they chose the last time. The implementa­

tion allows a boot ID of zero; if it is zero, the server accepts the request message 

regardless of the sequence number. This trick is used to do an RPC that returns 

the time so the client can initialize its boot ID. 
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Appendix C 
Partial Re-send on Fragment Loss 

A system of partial re-send and partial acknowledgment is part of the Sprite 
RPC network protocol. The current implementation is not perfect, however, so it 
is presented in this Appendix with some suggestions for future improvements. 

When doing partial re-send there are series of related problems. The first is 
how to tell the sender of a fragmented message which fragments have been suc­
cessfully received. This is done by returning a partial acknowledgment message 
that contains the receiver's summary bitmask. The summary bitmask has a bit 
set for each fragment that has been successfully received. 

The next problem is when should the receiver return a partial acknowledg­
ment. In the current implementation, the first time a receiver checks for missing 
fragments is when the last fragment of a message arrives. The last fragment is 
flagged with the LAST_ FRAGMENT flag so the dispatcher knows when to check. 
The flag is required because on a partial re-send the last fragment sent may not 
be the last fragment in the message. If the dispatcher detects missing fragments 
at this point it returns a partial acknowledgment to the sender. 

If the last fragment is lost, the situation is handled differently on the client 
and the server. The client process will timeout waiting for its reply, and at that 
point the it checks to see if it is receiving a fragmented reply. If it is, it notes the 
number of fragments it has received and waits again. If it times out again and 
has not received more fragments then it decides that some are missing and it 
returns a partial acknowledgment to the server. 

The servers, however, are passive, and they do not set up timeout periods. 
Instead, a server has to wait for fragments to arrive and decide when some frag­
ments have been lost. It does not detect the loss of the trailing fragment until the 
client retransmits its request and duplicate fragments begin to arrive. Each time 
a duplicate fragment arrives the server returns a partial acknowledgment. 
Because this can result in several partial acknowledgments, the client does not re­
send right away when it gets a partial acknowledgment. Instead, the client 
dispatcher saves the summary bitmask in the state of the client channel, and the 
client process waits until its timeout period elapses before resending. This is done 
so that it resends with the latest summary bitmask from the server. 

The loss of the last fragment by the server can result in very poor perfor­
mance if it happens very often. The situation can be improved by setting up a 
timer on the server when a fragmented message begins to arrive. The current 
implementation does not do this because it is extra overhead to enqueue call-back 
routines and then dequeue them after all the fragments arrive safely. Not having 
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a timer on the server, however, creates such a poor worst case that it is probably 
worth it for the server to set up a timer when receiving a fragmented request. 

The other possible modification to the current implementation would be to 
not have the client resend a fragmented request message upon timeout. Instead, 
it could send a probe message to which the server could reply with a partial ack­
nowledgment. Also, when re-sending a fragmented message, both the client and 
the server could introduce delays between fragments so the receiver has a better 
chance of getting all the fragments. 
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Appendix D 
Example Stub Procedures 

The client stub for the remote Read() procedure is given in Figure Dl. The 
stub uses a local buffer, readParams, to hold the three input parameters to the 
procedure. It sets up the first data area of the request message to reference this 
local buffer, and the second data area is empty. By convention, the second data 
area is used for large data blocks. The client stub also sets up buffer pointers for 
the two data areas of the reply message. In this case both data areas are used. 
The first contains the return parameter, amountRead, and the second contains 
the bytes read from the file. Because there are only two parameters, no local 
buffer is needed by the stub. The dispatcher will copy the amountRead value and 
the data block directly to the client process's buffers for those values. 

Figure D2 shows the corresponding server stub for the remote Read pro­
cedure. The dispatcher copies the three parameters in the first data area into a 
buffer previously set up by the server process. The server stub references this via 
requesUvfessagePtr<>dataL The stub then calls the Loca!Read() procedure which 
sets the buffer variable to point to a buffer in the filesystem's cache. Finally, the 
server stub sets up pointers to the two buffers containing the data for the two 
data areas of the reply message. In this case, the two buffers are the one in the 
filesystem cache, and the local variable amountRead. After the server stub 
returns, the server process sends the reply message to the client process. 
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RemoteRead(filePtr, offset, size, buffer, amountReadPtr) 

FsFile *filePtr; 

{ 

} 

int offset; 
int size; 
char *buffer; 
int *amountReadPtr; 

struct ReadParams { 
int filelD; 
int offset; 
int size; 

} readParams; 
RpcMessage requestMessage; 

RpcMessage replyMessage; 

int returnStatus; 

readParams.filelD = filePtr- > fileiD; 

readParams.offset = offset; 

readParams.size = size; 

requestMessage.command = RPC_ READ; 

requestMessage.datal = (char *)&readParams; 

requestMessage.sizel = sizeof( readParams ); 

requestMessage.data2 = (char * )0; 

requestMessage.size2 = 0; 

replyMessage.datal =(char *)amountReadPtr; 

replyMessage.sizel = sizeof(int); 

replyMessage.data2 = buffer; 

replyMessage.size2 = size; 

returnS tat us = RPC _Call( filePtr- >serveriD, &request Message, &reply Message); 

return(returnStatus ); 

Figure Dl. The client stub procedure for the read service procedure. Rou­

tines in the Sprite kernel call a general Read() procedure, and Read() calls Re­

moteRead() if the file is remote. 
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SrvRead( requestMessagePtr, replyMessagePtr) 
RpcMessage *requestMessagePtr; 
RpcMessage *replyMessagePtr; 

{ 

} 

struc:t ReadParams { 
int lile!D; 
int offset; 
int size; 

} *readParamsPtr; 

char *buffer; 
int amountRead; 
int returnStatus; 

readParamPtr = (struct ReadParams *)requestMessagePtr- >datal; 

returnStatus = LocalRead(readParamPtr- >file!D, readParamPtr- >offset, 
readParamPtr- >size, &buffer, &amountRead); 

replyMessagePtr->datal =(char *)&amountRead; 
replyMessagePtr- >size! = sizeof(int); 
replyMessagePtr- >data2 = buffer; 
replyMessagePtr- >size2 = amountRead; 

return(returnStatus ); 

Figure D2. The server stub procedure for the read service procedure, Local­
Read(). Loca!Read() is also called by the general Read() procedure when it 
reads from a local file. 
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